

HR weeds, How did we get here?

- Beliefs
- Dramatic reduction in diversity of weed management tactics
 - Increased reliance on chemical control
 - Reduced diversity of chemical control
 - Reliance on a single mode of action
- Less ex ante resistance monitoring & development of scientific understanding (compared to Bt crops)

HR Weeds: Beliefs

- Evolution of resistance to glyphosate unlikely
- Monopolist technology supplier had incentive to manage any resistance problems
- Among economists, no common pool externalities (so growers have private incentives to manage resistance)
- Among growers, resistance beyond their control (in part, because of common pool externalities
- Among growers, new technology would become available

HR Weeds: Beliefs

- HR crops complemented conservation tillage with attendant environmental benefits
- Glyphosate resistant (GR) crops would reduce overall environmental impact of herbicides

Enormous Selection Pressure Led to Resistance

• Easier to see with hindsight than at the time

- Dramatic reduction in diversity of weed management tactics
 - Increased reliance on chemical control
 - Reduced diversity of chemical control
 - Reliance on a single mode of action

US Herbicide applications

(kilotons of active ingredient applied)

	1964	1995	2005
Total Pesticides	97.5	235.7	222.8
Total Herbicides	21.9	146.1	144.6
Corn	11.6	84.5	76.4
Cotton	2.1	14.7	13.1
Soybeans	1.9	30.9	38.9
Herbicide a.i. / Total a.i	22%	62%	65%

Specific Crop Herbicide a.i as share of Total Herbicides a.i.

	1964	1995	2005
Corn	53%	58%	53%
Cotton	10%	10%	9%
Soybeans	9%	21%	27%
Three Crops	71%	89%	89%

Trends in glyphosate use in US corn production

Year	% Acres treated with glyphosate	Glyphosate a.i as % of total herbicide a.i
1997	4	1
1999	9	3
2005	33	15
2010	66	35

Trends in glyphosate use in US soybean production

Year	% Acres treated with glyphosate	Glyphosate a.i as % of total herbicide a.i
1995	20	11
1999	62	54
2006	95	89

Trends in glyphosate use in US cotton production

Year	% Acres treated with glyphosate	Glyphosate a.i as % of total herbicide a.i
1995	9	3
1999	36	20
2005	74	57
2010	68	62

US Trends in Corn Weed Management (% of acres)

Practice	1996	2000	2005
Herbicide resistant seed	_	11	31
Field scouted for weeds	81	83	89
Burndown herbicide used	9	12	18
Pre-emergence control	78	71	61
Post-emergence control	59	63	66
Cultivated for weed control	33	38	15

US Trends in Soybean Weed Management (% of acres)

Practice	1996	2000	2006
Herbicide resistant seed	7	59	97
Field scouted for weeds	79	85	91
Burndown herbicide used	33	27	31
Pre-emergence control	67	46	28
Post-emergence control	78	87	95
Cultivated for weed control	29	17	_

US Trends in Cotton Weed Management (% of acres)

Practice	1996	2000	2007
Herbicide resistant seed	NA	58	90
Field scouted for weeds	71	82	92
Burndown herbicide used	6	23	41
Pre-emergence control	90	79	73
Post-emergence control	62	76	89
Cultivated for weed control	89	63	38

Corn Herbicide Treatments

Herbicide Family	1996	2005
Phosphinic acid	2	19
Triazine	19	48
Amides	38	4
Benzoic / Phenoxy	48	5
Sulfonylurea	27	5
Pyridine	4	6
Other herbicides	15	9

Soybean Herbicide Treatments

Herbicide Family	1996	2006
Phosphinic acid	10	77
Dinitroaniline	20	3
Imidazolinone	21	2
Sulfonylurea	9	NA
Diphenyl ether	8	1
Oxime	7	1
Other herbicides	26	14

Cotton Herbicide Treatments

Herbicide Family	1996	2007
Phosphinic acid	3	60
Dinitroaniline	26	14
Urea	20	6
Triazine	13	2
Organic arsenical	12	1
Benzothiadiazole	3	1
Other herbicides	23	17

Changes in weed management from adoption of HR crops:

Internet survey of 54 agricultural professionals

Weed management practice	Respondents believing growers following practice "less" or "much less" as a result of HR crop adoption
Combination of weed control methods	>60%
Crop rotation for weed control	>40%
Annual rotation of herbicides	>50%
Use of multiple herbicides	>60%
Tillage for weed control	>80%

Bradshaw, et al. Perspectives on glyphosate resistance. *Weed Technology* 11, 189-198.

- Few plant species are inherently resistant to glyphosate . . .
- ... the long history of extensive use of the herbicide has resulted in no verified instances of weeds evolving resistance under field situations . . .
- ...Unique properties of glyphosate . . . may explain this observation . . .
- ... Selection for glyphosate resistance of crops is unlikely to be duplicated under normal field conditions. . .
- ... development of [GR] crops are unlikely to be duplicated in nature to evolve [GR] weeds.

"History shows again and again how nature points out the folly of men"

— Donald Brian "Buck Dharma" Roeser, from Blue Oyster Cult song, *Godzilla* [1977]

First Documented Resistance Cases

Year	Species	Region
1996	Lolium rigidum (Rigid Ryegrass)	Australia
1997	Eleusine indica (Goosegrass)	Malaysia
1998	Lolium rigidum (Rigid Ryegrass)	California
2000	Conyza canadensis (Horseweed)	Delaware

Perceptions that discourage BMP adoption

- Attribution of spread of resistant weeds to natural forces or neighbors' behavior
- Belief that individual action has little effect on resistance
- As of mid-2000s, low awareness of
 - How practices affect weed resistance
 - Importance of rotating herbicides with different modes of action & use of tank mixes for managing resistance

Perceptions that discourage BMP adoption

 As of early 2000s, low concern over resistance

 Confidence that new products will become available

Institutional Structure of Resistance Management: a Conceptual Framework

- Miranowski & Carlson. 1986. Economic issues in public & private approaches to preserving pest susceptibility. In Board on Agriculture (Ed.), Pesticide resistance: Strategies and tactics for management. Washington, DC: National Academy Press.
- What types of resistance regime will develop?
- Includes major actors (e.g. technology providers, government agencies) and not just growers

Applying Miranowski/Carlson framework

- Predicts regulatory approach for Bt crops
 - Pest mobility
 - Significant potential externalities (effects on Bt foliar sprays used in organic agriculture)

Predicts a laissez-faire approach to HR crops

Regulatory approach to resistance management for Bt crops

- How much did it improve *ex ante* resistance monitoring?
- How much did it improve scientific understanding?
- Now the big question . . . did EPA regulations save growers millions of dollars?

What do we do now?

Status of resistance management (RM):
 Adoption of BMPs

Identifying barriers to adoption

Bottom up vs. top down approaches to RM

Percentage of growers adopting BMPs always or often

BMP adoption survey summary

Good news

 many growers (surveyed) are following most practices most of the time

Bad news

- This has proven insufficient to prevent resistance
- We don't know about the behavior of many (if not most) growers

Industry surveys of grower attitudes and perceptions

- Sample frame based on a marketing approach
- Includes growers that account for most purchases, but . . .
- Usually sampling cut-off below 250-500 acres
 - 250 acres for corn & soybeans
 - 250-500 for cotton

Industry grower attitude surveys missing most growers

- <250 corn acres</p>
 - 22% of acres
 - 71% of growers
- <250 soybean cares</p>
 - 26% of acres
 - 72% of growers
- <500 cotton acres</p>
 - 21% of acres
 - 62% of growers
- <250 cotton acres</p>
 - 8% of acres
 - 42% of growers

Upshot

 We know very little about attitudes and perceptions of most growers

 They still account for 20-25% of acreage planted to HR crop varieties

Resistance Management as a "Weakest Link Public Good"

Potential for free-riding, plus

- Effective provision of good requires supply of effort from those with
 - Least incentive
 - Least capacity

Oilseed / grain farms (NAIC)

- 49% with net cash income <\$25,000
- ◆ 20% with net losses (<\$0)
- 34% of principal operators reported principal non-farm occupation
- 32% of principal operators worked >200 days off-farm

Cotton farms (NAIC)

- ◆ 36% with net cash income <\$25,000
- ◆ 18% with net losses (<\$0)
- 19% of principal operators reported principal non-farm occupation
- 24% of principal operators worked >200 days off-farm

Upshot

- A significant share of growers regularly lose money or earn below poverty level income from farming
- Significant share of growers
 - Spend large share of time in off-farm work
 - List non-farm activities as principal occupation
- Results are robust across Ag Census years

Research Question: How important is pure profit motive in decision making?

- Are calculations on net returns per acre capturing enough?
- Would looking at household utility make more sense?
 - Per acre net returns do not appear to explain rapid adoption of HR soybeans
 - How important are time-saving aspects?
 - How important are ease, flexibility, lower capital equipment requirements, etc. as issues?

Farm Household Utility

- Farm Income: Y_f
- Non-farm Income: Y_n
- Variance of income: (risk) Σ_f , Σ_n
- Time constraints
 - $-T = T_f + T_n + L$
 - Time farming, other work, & leisure
- Act of farming itself or acres farmed, A

Farm Household Expected Utility

max EU = EU(
$$Y_f$$
, Y_n , Σ_f , Σ_n , A)

s.t.
$$T = T_f(A) + T_n + L$$

s.t.
$$A > \underline{A}$$

where

- $-T_{f}(A) > 0$
- A is minimum acceptable operation size

Farm Household Expected Utility

$$\max EU = EU(Y_f, Y_n, \Sigma_f, \Sigma_n, A)$$

s.t. $T = T_f(A) + T_n + L; A > \underline{A}$

HR crops make T'_f (A) less pronounced

- Allows larger farms to get larger
- Allows small, part-time farms to maintain minimal operation

Implications

max EU = EU(
$$Y_f$$
, Y_n , Σ_f , Σ_n , A)
s.t. T = T_f (A) + T_n + L; A > \underline{A}

- Small farms may continue to operate even if they frequently lose money
- Time-saving technologies/practices have a value not captured in per-acre returns
- Threat of economic losses from resistance may not be sufficient to overcome barriers to more time-consuming resistance management

Implications

- If participation by many small-scale producers is needed, then transactions costs of collection active could be large
- Monsanto's Residual Rewards Program
 - Subsidizes adoption of residual herbicides
 - Overcomes collective action problem
 - Direct incentive through pricing system
 - Economists know power of pricing mechanisms to spur decentralized changes in behavior

Top-down vs. Bottom-up Approaches

- Top-down (federal government)
 - Command-and-control
 - Monitoring compliance difficult for HR weed management
- Top-down (private sector)
 - "Buy and apply" approach
 - Growers as "passive purchasers of products"
 - Emphasis on next "silver bullet" technology

Stacking multiple herbicide resistance traits

- Advantages
 - Herbicide products are known so approval may be faster
 - Possible to develop "optimal rotations" of herbicides
 - Could develop tank mix products

Stacking multiple herbicide resistance traits

- Disadvantages
 - Some weeds already resistant to multiple herbicides
 - Stacking less effective if resistance already a problem
 - May provide false sense of security and increase selection pressure inadvertently

Bottom-up Approaches

- Examples of grower-driven collective action
 - Groundwater management
 - Pest Eradication programs
 - Area-wide pest management
 - AZ Bt Cotton Working Group
 - Marketing orders
- Indirect role of government
 - Growers vote on rules
 - Government helps constrain free-riding
 - Government helps enforce rules agreed upon ex ante

Research Agenda

- ARMS data analysis
 - Potential to track changes over time
 - Do data capture smaller-scale producers missed by industry surveys?
 - What are growers doing and what aren't they doing to manage resistance
 - How do adopters and non-adopters differ?
- How is Residual Rewards Program working?
 - Is it changing grower behavior significantly?
 - Is this making a difference?

Research Agenda

- Costs and returns to RM practice adoption
 - Do we need to frame issue in terms of utility in a household model?
 - What are non-chemical options?
 - What is nature of trade-offs in terms of time and money?

Research Agenda

- Potential for grower-initiated, bottom-up programs
 - How applicable are examples from other areas?
 - Area-wide pest management
 - Pest eradication programs
 - Groundwater management
 - Role of small-scale producers
 - How much of a problem would their free-riding be?
 - How do other programs overcome free-riding and include smaller scale producers?

Thank You

• Questions?

Contact: <u>frisvold@ag.arizona.edu</u>

• Frisvold, G & J Reeves (2014 in press) Herbicide resistant crops and weeds: Implications for herbicide use and weed management. *In Integrated Pest Management: Pesticide Problems, Vol. 3.* D Pimentel & R Peshin (eds.) Dordrecht, The Netherlands: Springer.